python,python-2.7,floating-point,bigfloat

As an example, here's how you might compute f1 to a precision of 256 bits using the bigfloat library. >>> from bigfloat import BigFloat, precision >>> with precision(256): ... x = BigFloat('1e-19') ... y = BigFloat('9e9') ... z = BigFloat('1e-18') ... f1 = x * x * y / ((1...

julia-lang,arbitrary-precision,bigfloat

Not directly. My eventual plan is to make Distribution types parametric, which would also allow for Float32 arguments, but that is a while away yet. In the meantime, there is the non-exported φ which gives the result you wanted: Distributions.φ(x) - pdf(Normal(), x_small) ...